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The development of a new computational method for solving the incompressible Navier- 
Stokes equations in primitive variable form is presented. It is found that certain finite 
difference approximations for these equations can be transformed into an equivalent system 
which efficiently determines the discrete velocity field and which completely eliminates the 
pressure. Two such difference schemes for two dimensional problems are examined and some 
preliminary numerical results are discussed for the steady driven cavity problem. 

1. INTRODUCTION 

Of the numerous numerical solutions of the incompressible Navier-Stokes 
equations that have been reported, most are for two-dimensional laminar problems 
using the vorticity-stream function formulation. For the two-dimensional case, 
numerical methods based on this formulation have apparently been regarded as more 
efficient then those based on the primitive variable form of the equations which have 
the velocity components and pressure as dependent variables. Numerical methods 
using primitive variables, however, have been developed and are considered important 
primarily because this form of the equations provides, at least in principle, a 
relatively straightforward extension to three dimensions and to turbulent flows. The 
stream function-vorticity formulation, on the other hand, represents a differentiated 
form of the equations which for certain models of turbulent flow leads to second 
derivatives of the rather crudely modeled eddy viscosity. Furthermore, in three 
dimensions, the vorticity is three dimensional; thus its use as a dependent variable 
offers no inherent advantage. 

In this paper, we consider finite difference methods for the primitive variable form 
of the equations. The main problem generally associated with the development of 
such methods is to find workable and efficient algorithms for determining the discrete 
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pressure field in a manner consistent with the discrete divergence-free velocity field. 
To accomplish this in many of the existing finite difference methods, the pressure is 
coupled to the velocity by means of some modified form of the differential equations. 
For example, in the MAC method of Harlow and Welch 191 a Poisson equation for 
pressure, obtained by taking the divergence of the momentum equations, is used. In 
Dodge’s method 151, a different Poisson equation is used for a scalar related to 
pressure. Another technique, often used in unsteady methods where only the 
asymptotic steady state is desired, is to introduce an appropriate artiticial time 
derivative of pressure which of course vanishes in the steady state limit; see, e.g., 
Chorin [3]. From the above works, it is apparent that the pressure depends on the 
velocity in a complicated manner (often involving a differentiated form of the 
equations). Standard methods which directly treat pressure in this way are limited by 
this complicated dependency. However, the mathematical theory suggests a much 
weaker dependency of the velocity on the pressure. In fact, Temam I15 ] and 
Ladyzhenskaya [ 11) in considering the weak formulation of the incompressible 
Navier-Stokes equations show that for certain problems the pressure can be 
completely eliminated from the determination of the velocity field. Indeed, if the 
divergence condition is regarded as a constraint on the velocity field and the subspace 
of divergence-free vectors subject to appropriate boundary conditions is considered, 
then the momentum equations when projected into this subspace via an appropriate 
inner product provide a system of Galerkin equations which determine the velocity 
field and in which the pressure does not appear. We note that in 141, Chorin uses an 
iterative technique to determine pressure and velocity which is, in effect, a numerical 
construction of the appropriate projection operator. In 141, as with most other finite 
difference methods using primitive variables, the pressure is still coupled to the 
velocity in an essential way and thus must be determined along with the velocity at 
each step of the calculation. In principle, a more efficient computational method 
would result if the pressure were completely eliminated from the determination of the 
velocity field as suggested by the theory in [ 11, 15 1. 

This decoupling of the velocity and pressure has been achieved in various finite 
element methods (we refer the reader to the books by Temam [ 15 ] and Thomasset 
[ 161 for recent surveys). Two approaches have been used. In one, the Galerkin 
methods of Ill, 15 ] are applied to vector function spaces consisting of piecewise 
polynomials which are divergence-free (or “weakly” divergent-free). The other 
approach, referred to as penalty methods, is an alternative to satisfying the discrete 
divergence-free constraint. In these methods, the divergence condition is perturbed by 
the additions of a term involving a “small” parameter multiplying the pressure. This 
perturbed divergence condition is then used to eliminate the pressure in each element. 
The penalty method idea has also been considered in the framework of finite 
difference methods; e.g., see Temam [ 141. 

The decoupling of pressure from the velocity in certain finite difference methods 
while satisfying a discrete divergence condition has been achieved recently by Amit, 
Hall, and Porsching [ 1) using an ingenious application of network theory. In / 11, 
network theory is applied to the difference scheme proposed by Krzhivitski and 
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Ladyzhenskaya [lo] and a scheme using the discrete divergence and gradient 
operators of the MAC method [9]. When these schemes are reformulated in terms of 
network variables, a computationally equivalent method results for which the 
pressure variable is eliminated. 

In this paper, we consider a different computational method for finite difference 
approximations to the primitive variable form of the Navier-Stokes equations which 
also decouples pressure from the velocity while satisfying the discrete divergence 
condition. The approach used here is, in the context of finite difference approx- 
imations, the discrete analog of the Galerkin techniques used in Ill, 15 1. The 
methodology used here is therefore quite different from that of the network approach, 
although later we will indicate how the two methods are related for a few specific 
difference schemes. Conceptually, the present method is similar to the finite element 
Galerkin methods using weakly divergence-free subspaces; however, there is an 
essential difference. Indeed, the present method applies a Galerkin technique directly 
to the discrete finite difference approximating equations using certain subspaces of 
mesh vectors and mesh scalars (i.e., vectors and scalars defined only at node points 
of some finite difference mesh); whereas, the finite element Galerkin approach uses 
various subspaces of piecewise polynomials in the nondiscretized weak form of the 
equations. By design, the present approach is intended for convenient application to 
various finite difference approximations for the primitive variable equations in order 
to obtain an equivalent system, referred to here as the discrete Galerkin formulation, 
in which the discrete pressure unknowns do not appear. 

The present method has been used in the work of Krzhivitski and Ladyzhenskaya 
[ 101 where a specific finite difference scheme was considered. In 1 IO]. the discrete 
Galerkin formulation was used solely as a device for obtaining a convergence proof 
for the proposed finite difference scheme-the computational advantages of the 
formulation were not mentioned. Temam I15 ] has also formulated a finite difference 
method in a Galerkin framework similar to that used here. This work deals primarily 
with the theoretical aspects of the formulation and, thus, does not consider in any 
detail its computational implementation. The finite difference scheme considered by 
Temam uses the same forward-backward difference approximations for the 
divergence and gradient operators as those in the Krzhivitski-Ladyzhenskaya 
scheme. We also note that discrete divergence-free subspaces based on forward 
differences have been considered by Cea [2] in his study of certain linear elliptic 
problems with a divergence-free constraint. 

In this paper, the discrete Galerkin formulation is developed so that a general class 
of finite difference schemes can be considered and which focuses on the various 
computational aspects of the formulation needed for its implementation. We find that, 
in general, finite difference methods which admit an equivalent discrete Galerkin 
formulation are those for which the discrete divergence and gradient operators 
applied to certain spaces of mesh vectors and scalars are formally adjoint. (This 
condition is a discrete analog of integration by parts for ordinary functions.) Apart 
from this requirement, the discrete Galerkin formulation retains much of the flex- 
ibility of usual finite difference methods in that there is essentially no restriction on 
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the way the convective and diffusive terms are differenced. This is in contrast to finite 
element Galerkin approximations where the discretization of these terms is generally 
dictated by the choice of the approximating function spaces. For certain discrete 
divergence-gradient pairs, the subspace of discrete divergence-free mesh vectors is 
relatively easy to construct. As a result, the discrete Galerkin method associated with 
these schemes is computationally very efficient. In contrast, the divergence free 
subspaces associated with finite element methods using conforming piecewise 
polynomials are more difficult to construct. The equivalence of certain finite 
difference schemes to their discrete Galerkin formulation also provides a theoretical 
foundation for analyzing the existence, uniqueness, and convergence of solutions to 
these schemes. This topic will be pursued in future work. 

In this paper, we shall concentrate on the conceptional and computational aspects 
of the discrete Galerkin approach. We begin, in the next section, with a description of 
the formulation of the method in rather general terms. Then, in Section 3, two finite 
difference schemes for the divergence-gradient operator pair in the two-dimensional 
case that admit discrete Galerkin formulations are examined and the relationship with 
their network interpretations are briefly discussed. One of these schemes is the 
forward-backward operators considered in [ 1,5, 101. In Section 4, we indicate how 
general boundary conforming mesh generating transformations can be implemented in 
the approach. To illustrate the utility of the method, example calculations for the 
steady driven cavity problem are described in Section 5. Finally, in the last section. 
some concluding remarks are presented. 

2. THE DISCRETE GALERKIN APPROACH 

In this section, we describe, in abstract terms, the basic formulation of the discrete 
Galerkin approach for fairly general problems. In the following sections, details of 
the implementation for specific two-dimensional examples will be given. 

We consider the incompressible Navier-Stokes equations in a bounded region Q 
with boundary 3.0. The problem, in the primitive variable form, is to find a velocity 
field v and a pressure field p satisfying 

NV = -vAv + (v . V) v = -VP + F(v) in Q, (2.1) 

v.v=o in Q, (2.2) 

v=p on 8.0, (2.3) 

where V and V. are the gradient and divergence operators, respectively, and A is the 
Laplacian. The specified boundary data p must satisfy 

( V.v=\ P+n=O, 
-n -80 

(2.4) 
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where n is the normal to CM2. For simplicity, we have taken the operator N 
corresponding to laminar flow with unit density. For the present discussion, however, 
more complex forms of the incompressible Navier-Stokes equations can be 
considered; in fact, we only require that N and F be independent of pressure. Thus, 
for example, other forms of N corresponding to certain turbulence models where r 
depends on the velocity gradient tensor can be considered. In addition, the analysis 
remains valid when F contains temporal derivatives of v for treating unsteady 
problems. 

We first give a discrete form of (2.1~(2.3) based on finite difference approx- 
imations. For this purpose, we consider a mesh covering of Q such that the interior 
nodes Q, c 0 and the boundary nodes aa,, are on (or very close to) aB. On this 
mesh, we define mesh vectors uh. We also need to introduce the spaces 

V,, = (u” defined on oh U c~Q,), 

V;=(Uh)uhE V,,Uh=Oonm,), 

VA = (uh defined on J2,). 

The spaces Vi and VA with restriction and extension to zero, respectively, are 
isomorphic and, thus, can be used interchangeably. Let fi, be a mesh covering of R 
(and, possibly, portions of 30) on_which mesh scalars are defined and let W, be the 
space of mesh scalars defined on 0,. 

Finally, let ,Yh, Qh, N,, and F, denote discrete finite difference operators approx- 
imating V, V., N, and F, respectively. These operators are defined such that 

and 

N, : V,+ I’;, F, : V,, + I’;. 

The difference equations approximating (2.1j42.3) are then given by 

Nhuh = -Fhph + Fh(uh) on Qh, 

!22,Uh = 0 on d,, 

Uh = ph on dQh, 

(2.6) 

(2.7) 

(2.8) 

where p” is an appropriate discretization of the data p. 
We now show that a discrete Galerkin formulation can be obtained which is 

equivalent to (2.6)-(2.8) provided that Bh and %Yh satisfy 

(ahUh, 4”)~~ = (d -q@h)“):, Uh E vi, (2.9) 

where (+, a),,~ and (e, .)w, are inner products for ph and W,, respectively. Note that 
(2.9) is a discrete analogue of integration by parts for ordinary functions with L* 
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inner products. However, not all finite difference schemes for 9, and ,Yi satisfy (2.9). 
The condition (2.9) implies that gh and -Yi are adjoint and thus (see, e.g., 
[ 8, p. 48 I), we have the following decomposition of v”h : 

THEOREM 2.1. fl=D,,@G,, where 

D,=(& v”,jQ1~=0), 

We note that this result is, in some sense, a finite dimensional analogue of a well 
known decomposition for L* vector fields (see, e.g., [ 11, p. 28 I). A decomposition 
similar to that of Theorem 2.1 was used by Chorin [4] in defining an iterative scheme 
for the unsteady problem with periodic boundary conditions. 

The decomposition of q leads directly to a discrete Galerkin approximation. 
Indeed, let {a:, Q): ,..., at} be a basis for D, and let ah E I’,, satisfy g,,ah = 0 on ah 
with ah = ph on aQh. Then the discrete Galerkin approximation, wh = cy=, a,@:, is 
defined as the solution of 

(Nh(wh + ah), @f),,O = (Fh(wh + ah), @:),;, i = I,..., m. (2.10) 

The system (2.10) represents m (scalar) equations for the m (scalar) coefficients (xi 
and is equivalent to the finite difference system (2.6~(2.8) in the following sense: 

THEOREM 2.2. If uh, ph satisfies (2.6)-(2.8), then wh = uh -ah satisfies (2.10). 
Conversely, if wh satisfies (2. lo), then there exists a ph E W, such that (w” + ah), ph 
satisfies (2.6)-(2.8) 

ProoJ Suppose uh, ph satisfies (2.6~(2.8). Then wh = uh -ah E Vi and 
whEDh. Also N,(wh + ah) = Nhuh = -Yhph + F,(wh + a”) which implies that 
Nh(wh + a”) - (F,(wh + ah) E G, which implies that wh satisfies (2.10). For the 
converse, suppose wh satisfies (2.10). Then uh = w” + ah satisfies ghuh = 0 on fi, 
with uh =ah =fih on 30,. Also, Nhuh - Fh(uh)E D,-= G,. Hence there exists a 
ph E W, such that -Nhuh + Fh(uh) = Yhph. 

In order to obtain a computational algorithm based on the discrete Galerkin 
approach embodied in (2.10), one must have a convenient means of constructing the 
basis mesh vectors (a:; i = I,..., m) and the mesh vector ah which annihilates the 
boundary data. The construction of these quantities will be discussed in detail in the 
following section where we give examples of specific schemes for !Ph, .Th in two 
dimensions for which the associated (OF} are obtained in closed form and 
m = dim(D,) = O(M), where M is the number of nodes of 0,. In such cases, (2.10) 
not only uncouples the pressure from the velocity but also determines the velocity in 
terms of O(M) scalars. This represents a sizeable reduction in variables over (2.6t 
(2.8) which involves 0(3M) coupled unknowns for two-dimensional flow. The 
discrete Galerkin approach presented here is similar in spirit to the work of Amit et 
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al. [ 11 who use network theory to transform the two-dimensional primitive variable 
equations to a system involving O(M) network variables in which pressure is 
eliminated. More discussion of the connection between the discrete Galerkin and 
network theory approaches will be given in the following section. 

Since N, is nonlinear, (2.10) represents a system of nonlinear equations for the 
coefficients ai. To numerically solve this system, we have used in our example 
calculations an iterative technique based on Newton’s method with continuation in 
Reynolds number R = LU,,/v, where L and U, are characteristic length and velocity 
scales, respectively. Details of this procedure will be given in Section 5. More 
sophisticated continuation and quasi-Newton iteration (see, e.g., 15, 11 1) would 
probably be more efficient but will not be considered here. Also, other iterative 
strategies could be used; for example, the discrete operators N, and F, could be taken 
as appropriate linearized approximations to N and F. 

After the solution wh of (2.10) has been determined, the pressure ph can, if desired, 
be obtained in a separate calculation using the linear equations 

‘Gh ph = F ,,(wh + ah) - N,(wh + ah), (2.11) 

where the right-hand side is now known. The linear system (2.11) is consistent but 
will, in general, be singular since dim(ker 2 h) > 1. (Recall that a consistent finite 
difference approximation for Vp will be zero for a constant mesh scalar.) Thus to 
obtain ph uniquely either a minimum norm least squares procedure can be used or the 
system (2.11) must be augmented with constraints. 

3. PARTICULAR CHOICES OF %I,,, .r',, 

In this section we consider two different choices of the operators CL,, and .Y,, for use 
in applications of the discrete Galerkin method to two-dimensional planar flows. For 
simplicity, in this section, we assume R is the unit square and we consider meshes 
with uniform spacing. In the next section, we discuss the implementation of non- 
uniform meshes on more general domains using mesh generating transformations. 

3.1. Scheme I 

On the unit square J2, we define the meshes 

Q, = ((ih,jh) 1 i = l,..., n;j = l,..., n), 

X2, = ((ih,jh) 1 i = O,..., n+ lwhenj=Oandn+ 1; 

j = o,..., n+ 1 wheni=Oandn+ l}, 

n’,, = ((i + f) h, (j + 4) h) 1 i = 0 ,..., n;j = 0 ,..., n), 



INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 159 

I-"1 (O,n+l) _ (n+l,n+l) 
* 

t t t + + 

0 

T  + 

41 

L,, 

t t + + 

. 0 i v,, 

+ + + -t + 
Ci+'i:,, I+l/zj 

l E au,, 

0 n 

+ii %'j) 

<>I 
+ t ii,, 

+ t + + 

0 0 (> 0 

+ + + + + 

. A 4 
(O,O) (n+l,O) 

FIG. 1. Meshes for Scheme I. 

where h = l/(n + 1). Note that the mesh nodes of fi,, are defined to be the centers of 
the computational cells induced by Q,,, see Fig. 1. For these meshes, the spaces V,, 
phph, VL, and W, defined in Section 2 have dimensions given by 

(i) dim V, = 2(n + 2)‘, 

(ii) dim v”, = dim VA = 2n2, 

(iii) dim W, = (n + 1)‘. 

The operators g,, and VL are defined on Vh and W,,, respectively, as 

(QhUh)i+1/2.j+1/2 =& I('i+l,jtl -'i,j+l)+ ("i+l.j-ui,j) 

+ tUi+l,j+ I - 'i+ *,j) + tVi,j+ I - vi,j)l 

(3.1) 

where uh = (E) E V, and 

. (3.2) 

These definitions obviously satisfy (2.5). We note that the staggered grid system and 
the above operators have previously been proposed for standard finite difference 
calculations, see [ 71. As pointed out by one of the reviewers, these operators can also 
be obtained from a finite element expansion using bi-linear velocity and piecewise 
constant pressure on square elements; e.g., see Sani et al. [ 121. 
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On I$ and W,,, we consider the standard 1’ inner products 

(u, v)v,o = 2 2 uij * vij 
i=l j=l 

and 

It is then straightforward to show that (2.9) is satisfied and hence we have the decom- 
position of v”h given in Theorem 2.1. We now show 

Remark 3.1. (iv) dim ker .Z, = 2, 

(v) dim G, = (n + 1)’ - 2, 

(vi) dim D, = (n - 1)‘. 

ProoJ: (iv) implies (v) since dim G, = rank .VhGh, dim W,, = dim ker .Z,, + rank .S,,, 
and (iii). From Theorem 2.1 and (ii), it follows that (v) implies (vi). To prove (iv), 
we show that 

1 
Vit(l/2),jt(l/Z) - - 1, i + j even, 

= 0, i+jodd, 

and 

2 
Wit(llZ),j+(1/2) - - 0, i + j even, 

= 1, i+jodd, 

span ker .Yi. It is obvious that w’ and w2 are independent and belong to ker .Yh. Now 
let y E ker ,Yh and consider 4 = y - ~~,,~),(r,~) w’ - Y~,,~,,~,~~Y’. Clearly 4 E ker .Z, and 

4 -4 - 0. But then, (.Vh#),,, = 0 implies that #3!2.(,,2) = #3/2,3/2 = 0 (l/2),(1/2) - (l/2),3/= - 
and by an induction argument we see that 4 = 0. Thus, y = Y~,,~,,,,,~, w’ + y112,312 v2 
which proves that I#, I,V’ span ker .V,,. 

We now show 

Remark 3.2. The mesh vectors defined by 

qj!+(1/2).m+(1/2) = (1,-l)', 
Y  

i = I, j  = m, 

= (1, I)‘, i=l+ l,j=m, 

= (-1, l)‘, i=l+ l,j=m+ 1, 

= (-1, -I)‘, i = 1, j=m+ 1, 

= (0, ql, all other i, j, 

I = l,..., n - 1; m = l,..., n - 1, (3.3) 
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are a basis for D,. Here the index I + (l/2), m + (l/2) corresponds to the center of 
the cell that forms the support of the particular mesh vector. 

Proof: For each 1, m it can be directly verified that ~,,@‘t(“2)Vm t1”2) = 0 on fi,,. 
To see that the (n - 1)’ mesh vectors are independent, we note that each mesh vector 
is a translation of the same basic mesh vector. For a formal proof of independence, it 
suffices to examine the associated Gram-Schmidt matrix. A computation shows that 
this matrix is irreducibly diagonally dominant with positive diagonal entries and non- 
positive off-diagonal entries. Therefore it is a M-matrix and hence non-singular. 

Consider now the determination of boundary mesh vectors a” E V, satisfying (2.7) 
and (2.8) for this scheme. In order for such a mesh vector to exist, the discrete 
boundary values ph must satisfy certain conditions analogous to (2.4). Indeed, we 
note that (2.7) implies that 

2h(~~ah)i+(,,2,,j+(1,2) = 2 2h((~*ah)i+(l,2).i+(,,2) =O 
i,j=O i,j=O 

(i+j,even) (i tj.odd) 

and, because of the telescoping nature of the summands, each sum involves only the 
components of the boundary mesh vector. Let pb = (uij, vij)‘, then adding and 
subtracting these sums gives 

- L f(~o,o+~o,n+I)+ .f U0.w + f(%+l,O+~n+I,ntl)+ f UPIt,,, *=I I I u-l 1 

- 5@0,0 + 5tt,,o) + ? Ur.0 [ I i + t(~o.ntl+%+l.n+I)+ 2 up.,,t, I 
=o 

JL=I fl I 
(3.4) 

and 

t (-l)W (U,+,,,-24 ,,o)+W)” 9 (-l>“(U,+,,n+I-~U,n+,) 
p=O p=o 

+ 2 C-1)” (~o,&L+I - uo,,) t (-1)” f (--1Y (~n+,,ut, -~,+,J=O. 
&t=o p=O 

(3.5) 

Condition (3.4) involves only normal components of p” and in fact, represents the 
trapezoidal rule approximation to (2.4) (for the unit square Q). On the other hand, 
condition (3.5) involves only tangential components of p”. A condition similar to 
(3.5) has also been given for the finite element method of Sani et al. 1121. In 
problems involving smooth data, p, it may be necessary to make small O(h*) 
adjustments in the discretization of I3 in order to satisfy (3.4) and (3.5). 
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Conditions (3.4) and (3.5) are also sufficient to ensure the existence of a mesh 
vector ah satisfying (2.7) and (2.8). To see this, we seek ah in the form 

nt2 ni2 

ah= \‘ \' 

121 my., 

011+(l/2).mt(l/2~~lt~l/2~.m+(l/2~ 
9 (3.6) 

where the mesh vectors @‘t(“2’,m+(“2) are as defined in (3.3) with the understanding 
that those mesh vectors with support outside of ah U X’, are restricted to aa,. 
Clearly, ah E V, and satisfies (2.7). If ah satisfies (2.8) then it follows from (3.3) and 
(3.6) that 

pfi = (Uij, UJ = a i-(l/2),j-(l/2)(-1, 1)' + ai-cl:2).,it(l12)(l, 1)' 

+ Crit(l12).i+(l/2)(1,-l)l + uit'l!2).i~(I:2)(_1,_1)/ 
(3.7) 

Ol- 

ai-(l/2).i+(1/2) -ai+(l12).i-(I:2) _ 
- (Uii + q/2 (3.8) 

and 

a is(II2).,it(l/Z) -ai-(l12).i-(l~2) _ 
- C"i.j - 'i. j)/23 (3.9) 

where the i, j indices correspond to the nodes of aQn, and, of course, the components 
of pb are given. It can be shown that (3.8) and (3.9) can be solved for the 
a’i”‘2’*jt(1’2) corresponding to the centers of cells bordering 80, on both sides if 
and only if ph satisfies (3.4) and (3.5). These ai+(L’2)*jt(1’2) are determined along two 
distinct zig-zag paths around a.Qnh as illustrated in Fig. 2. One ait (“2)SJt(i’2)on each 
path is arbitrary. Also, all other coefficients in (3.6) (i.e., I= l,..., n: m = I,..., n) are 
arbitrary and for simplicity, can be taken to be zero. 

FIG. 2. Paths for the solution of Eqs. (3.8) and (3.9). 
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3.2. Scheme II 

As a second choice of the operators Q,,, ‘V*, we consider the operators used in the 
time dependent scheme of Krzhivitski and Ladyzhenskaya [IO] and also considered 
in [ I] using network theory. For this scheme, the mesh 0, is the same as for Scheme 
I; however, 80, and fi,, are different. In particular we define 

~32~ = ((ih,jh) / i = l,..., n+lwhenj=Oandn+l; 

j= I,..., n + 1 when i = 0 and n + 1 } 

and 

where 

r,, = { (ih,jh) 1 i = l,.,., n whenj = 0;j = l,..., n when i = 0). 

The spaces V,,, VI, VA, and W,, are as defined in Section 2 for these meshes. The 
operators 5?h : Vh + W,, and Yh : W,, + VA - Vi are defined, respectively, as 

(ghU*)i,j=+ [(Ui+~,j-Ui,j> + Cvi,j+l -‘i.j)JT (3.10) 

where U” = (u, a)’ E V, and 

(3.11) 

On Vz and W,,, we define the standard I2 inner products as before. Then, it can be 
directly verified that g,,, Yh defined by (3.10) and (3.11) satisfy (2.9) and hence the 
decomposition of VI given in Theorem 2.1 is valid. 

For this scheme, we have that dim V, = 2(n + 2)2 - 2, dim e = dim VA = 2n2, 
and dim W,, = (n + j)’ - 1. Further, it is easy to see that .Yh# = 0 on a, if and only 
if # = constant on Q,; hence, dim ker .Yh = 1. As in the previous example, it can be 
shown that the subspaces defined in Theorem 2.1 have dim D, = (n - 1)’ and dim 
G, = (n + 1)2 - 2. A basis for D, is given by 

@!+,1/2,m+ 112 = (0, 1)” 
l.J i=l,j=m+ 1, 

= (-I, oy, i=l+ l,j=m, 

= (1, -I)‘, i=l+ l,j=m+ 1, 

= (0, o>*, all other i, j, I=1 ,..., n-l, m=l,..., n-l. (3.12) 

.581/53/l-12 
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Note that the (n - 1)’ mesh vectors defined by (3.12) are translations of the same 
basic mesh vector. 

For this scheme, a necessary and sufficient condition for the existence of mesh 
vectors ah satisfying (2.7) and (2.8) is 

UO,l + UI,O + 9 ho + ~0.J - ;- (up.,+, t %+,,,> = 0, (3.13) 
fl=l p%J 

where p” = (u, 0)‘. This condition arises from the summation of (@hah)i,j = 0 over all 
nodes of fi,. When oh satisfies (3.13), ah can be constructed in a similar manner as 
given for Scheme I; viz. we use the representation (3.6) for ah but with 
P /t(l/2),Pl+(1/2)) defined as in (3.12) and with a-(I/2).-(l/2) = an+3/2.ni 3!2 = 0. As 

for the other coefficients {a’f(“2”mt “‘“) corresponding to the centers of cells 
bordering the boundary on both sides, one is arbitrary and the others can be deter- 
mined in terms of the given data Ph using 

pti = (Uij, “J = ai+(l/2),j-Cl/2)(o, 1)’ t ai-(li2)..i--(l/2)(1, -1)’ 

+ ai-Cl/2)3j+Cl/2)(-l, 0)’ (i,j # 0, 0). 
(3.14) 

Note that, for this scheme, 80, does not include the node (0,O). Thus no data is 
given at (0,O) and ah is not defined at (0,O). In applications where the discretization 
of N in the momentum equations requires the velocity at node (0, 0), it will be 
necessary to include this node in the definition of ah. In such cases the above 
procedure is slightly modified. The data at (0,O) must satisfy uo., + u,,~ - uo.o - 

- 0 and the coefficient K(“~).-(“~’ 
z%g(3.14) with (i,j) = (0,O). 

must be included in (3.6) and is determined 

3.3. Connection with Network Theory 

There is an interesting relationship between the discrete Galerkin formulation and 
the network theory approach of Amit et al. [ 11. Indeed, following [ 11, both Schemes I 
and II (and probably others) can be interpreted as a network consisting of a system 
of nodes with directed connecting links. The incidence matrix A of the network and 
its negative transpose -A’ are representations of the discrete divergence and gradient 
operators Qh, .Fh, respectively. Further, the fundamental matrix C associated with the 
network and formed from elementary cycles has the property that AC = 0. Thus, the 
columns of C form a basis for the space D,. 

Although Scheme I was not considered in [ 11, it can be interpreted as a network 
consisting of two disjoint, connected components. For each component, the pressures 
are the “states” at the nodes which are isomorphic to mesh points of fi, with i +j of 
the same parity and the appropriate velocities are the “flows” on the connecting 
links; cf., see Fig. 3. The disjoint character of this network is indicative of the fact 
that the null space of ,Vh has dimension 2 for this scheme. 

The network interpretation of Scheme II has been given in [ l] and need not be 
discussed here. Also given in [ 11 is an application of network theory to a finite 
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FIG. 3. Molecule for each component of the Scheme I network. 

difference method utilizing the discrete divergence and gradient operators given by 
Harlow and Welch [9] for the MAC method. For this scheme, Q,, and ,Yh are defined 
essentially the same as Scheme II but with the understanding that (uij, uij) represents 

C”i- (llZ),j~ u~,~-(,,~)). Although not considered in detail here, we note that the 
operators gnh, %Vh so defined can be used in a discrete Galerkin approach similar to 
that associated with Scheme II. The space Vi is different at certain boundaries than 
that of Scheme II but the basis mesh vectors for the subspace D, are of the same 
form as (3.12) (with the above interpretation). 

For all schemes 5?,,, Yh considered here both the discrete Galerkin and the network 
approach represent the discrete velocity field as certain linear combinations of basis 
mesh vectors or elements of a fundamental matrix both of which are known in closed 
form. Thus for both approaches the discrete velocity will satisfy the discrete 
divergence condition (2.7) to within machine round-off error in actual calculations. 
Also the coefficients determined by both approaches, when interpreted as discrete 
scalar fields (with appropriate scale factors), correspond to a discrete stream 
function. To see this for the discrete Galerkin approach, consider the representation 
of the discrete velocity components in terms of the coefficients {a} given by (3.7) or 
(3.14) for any mesh point. 

4. MESH TRANSFORMATIONS 

The schemes for g,,, ,Yh given in the previous section for the unit square with 
uniform meshes can be extended to more general domains and nonuniform meshes 
using boundary conforming, mesh generating transformations. We briefly sketch here 
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how this can be accomplished for domains R which are topologically equivalent to 
the unit square. 

Let 
& : x = x((, ?j), Y = Y(L VI 

be a sufficiently smooth, one-to-one mapping of the unit square fi onto the given 
domain Q with sufficiently smooth inverse, 8 - ‘. The transformation K- can be given 
in closed form or can be approximated numerically using a mesh generating 
procedure; e.g., see [ 171. The r, q plane is where computations are performed and, 
thus, all quantities are considered as functions of (<, v). Accordingly, the divergence 
operator can be expressed in the l, q plane using the identity 

v * u = (l/J)@ + fi,), (4.1) 

where 

J = det(T) # 0 on dud, T= 

and u”, v̂  are the components of the transformed velocity vector defined by 

ii = (6, I?)’ = Tu = T(u, v)‘. 

The transformed components of Vd (4 a scalar) are given by 

TV4 = (l/J) TT’G, > 4,)’ (4.2) 

and the transformed components of the momentum equation (2.1) can be expressed in 
the form 

(4.3) 

where fl denotes the operator N with x, y derivatives expressed in terms of r, q 
derivatives. A will therefore contain elements of T and their partial derivatives. 

In the c, q-plane, we define on fi the meshes ah, Ban, and n’, as in Section 3 and 
let ii denote the transformed vector mesh function, ih = TLuh, where T, is the 
restriction of T to Q, U X2,. Further, let phi,, c, PA be the spaces of transformed 
vector mesh functions, tih, defined analogously to the spaces V,, phr Vk introduced 
in Section 2. On ph, we consider the inner product 

(ih,ih)pt=x {J(T,‘$‘). (T,‘ih)} =x {Ah . [(T’,)-’ Ti’ihI}, 
Oh nh 

where the sum is over all nodes of ah. The space of scalar mesh functions, @,,, is the 
same as W,, defined in Section 2 but with the inner product 
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where the sum is over all nodes of fi,. Discrete divergence, Gih : p,, + @,,, and 
gradient ,$, : @‘h + fi operators corresponding to the right-hand sides of (4.1) and 
(4.2), respectively, are defined by 

g’,Gh =+Ghih (for nodes of fi,) (4.4) 

and 

(for nodes of Q,), (4.5) 

where the discrete operators Qh, YJ are the same as those given in Section 3. Since 
P,, ,Fh satisfy (2.9) (for the inner products considered in Section 3), we have that 

Hence, the operators ah, ,pi induce the decomposition pi = ah @ Gh where the 
subspaces 8, and G, are analogous to D, and G, defined in Theorem 2.1. Further, 
the algebraic structure of the subspaces fib and 6, are the same as indicated in 
Section 3 for D, and G,. In particular, the basis mesh vectors for D, given in 
Section 3 are also a basis for ah. 

It follows from (4.1)-(4.5) that the finite difference equations approximating 
(2.1t(2.3) in the <, q-plane are 

ThNhuh = -.k$p’ + ThFh(uh) on R,, (4.6) 

gh(Thuh) = 0 on oh, (4.7) 

Uh = ph on an,, (4.8) 

where fi, and F, are discrete finite difference operators approximating N and F 
respectively. To obtain a discrete Galerkin formulation which is equivalent to (4.6)- 
(4.8) in the sense of Theorem 2.2, we first construct a mesh vector ah satisfying (4.7) 
and (4.8). For this purpose, we consider ih = T,ah satisfying ahah = 0 on Qh and 
ah = T,,ph on 30,. The construction of ah is the same as the boundary mesh vectors 
in Section 3. 

Let {a: : i = l,..., m = (n - 1)‘) denote the basis mesh functions of D, defined in 
Section 3. Since these also form a basis for ah, the discrete Galerkin approximation 
equivalent to (4.6t(4.8) is defined as w” = T;‘(CF=, a,@:), where wh satisfies 

(Q:, T,G,(w” + a”))g; = (@f, ThF,(wh + a”))p;, i = I,..., m. 

We note that with only slight modification the above can be used to treat problems 
with cylindrical symmetry. Indeed, suppose x is the axial and y the radial coordinates 
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for describing axially symmetric flow. The divergence condition is then given by 
V . u = [ (yu), + ( yv),]/y = 0, where U, u are the axial and radial velocity 
components, respectively. This case can be treated by introducing appropriate factors 
of y in the definitions of ti, Gh, $, and the inner products. 

5. APPLICATIONS TO THE DRIVEN CAVITY 

To illustrate the application of the discrete Galerkin approach, we consider the 
steady, laminar flow of unit density in a square cavity with moving top wall. The 
flow domain and boundary conditions are normalized as indicated in Fig. 4. Thus, 
the Reynolds number R = l/v is the only parameter. This problem presents a very 
simple geometry for application of finite difference schemes. However, it also 
possesses a difficulty in that the u component of velocity is discontinuous at the two 
upper corner points (cf., Fig. 4). Since our purpose here is only to illustrate, by way 
of example, an implementation of the discrete Galerkin formulation, we shall not 
present a systematic numerical study of this problem. Such a study would only 
emphasize the properties of the particular underlying difference schemes and the 
particular numerical implementation of the discrete Galerkin formulation-matters 
which are not the central issue in this work. 

For our sample calculations, we have selected two finite difference schemes which 
employ the operators L?,,, Zh defined in Section 3. One scheme uses the operators CL,, , 
‘gh defined by Scheme I (viz. Eqs. (3.1) (3.2)) with a centered “conservative” 
difference approximation to N defined by 

WhVh)i.j = - Rh2 L (8, + 8,,) Vfj + * d,(UijVf/) + $ 6y(Vijv~j)Y (5.1) 

1 

FIG. 4. Driven cavity problem. 
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where v; = pij, uijy, Jx,(e>ijE (*>i+l,jp2(*)ij+ (‘Ii-l,jY 6x(‘)ijE 4l(*>i+l.j- 

(.)i- i,j], and S,, 6, defined analogously. We will refer to this scheme as Scheme A. 
The other scheme, which we will refer to as Scheme B, uses g,,, L?jj defined by 
Scheme II (viz. Eqs. (3.10) and (3.11)) with N approximated by 

(5.2) 

where U,(.)ij- +[(.)i+i,j + (*)ij], V, = (*)ij- (*)i-i,j, and CJ,,, V, defined 
analogously. We note that Scheme B is essentially the nonlinear version for steady 
flow of the linearized unsteady scheme proposed in [IO]. 

In the driven cavity problem, the discontinuity of u at the upper corners creates an 
ambiguity in the specification of the discrete boundary data ph. Recall that B” enters 
directly in the discrete Galerkin formulation through the construction of a mesh 
vector a” satisfying (2.7) and (2.8). In our example calculations, we have take u = 1 
at both upper corner points. This leads to the rather simple choice of ah given by 

ah = (1,O)’ i = O,..., n+l;j=n+l, 

= (0,O)’ all other points of (2, U &2,, 
(5.3) 

which satisfies (2.7) and (2.8) for both Schemes A and B. Other choices of u at the 
upper corner points could be considered; however, care must be taken to ensure that 
the discrete boundary data satisfy the necessary and sufficient conditions given in 
Section 3 for the existence of an ah satisfying (2.7) and (2.8). 

For both the schemes considered here, the discrete Galerkin equations (2.10) 
represent (n - 1)’ nonlinear equations for the unknown coefficients a = (ai : i = I,..., 
(n - l)*}. These equations are considered in the form H(a; R) = 0 and solved using 
Newton’s method with continuation in Reynolds number. That is, numerical solutions 
are obtained for an increasing sequence of Reynolds numbers R starting with R = 0 
(Stokes flow). For each (fixed) R, H(a; R) = 0 is solved iteratively using 

[H.(a”; R)](akt’ - ak) = -H(ak, R), k = 0, 1, 2,. . ., (5.4) 

where ak is the kth iterate and H, is the associated Jacobian matrix. For each R, the 
iteration is started with a0 taken as the “converged” solution of (5.4) for the previous 
value of R (for R = 0, a0 is taken equal to those which determine a”). As previously 
indicated, this procedure is but one of several possible iterative strategies compatible 
with the discrete Galerkin formulation (for others see, e.g., (6, 131). To indicate the 
amount of computational work required for each iteration of (5.4), we note that for 
both Schemes A and B the {ai} can be ordered so that the matrix H, is banded with a 
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band width of 4n + 1. In fact, H, is similar in structure to the matrix arising from the 
usual differencing of the biharmonic operator. 

For the numerical results presented here, the Jacobian matrix H, was evaluated 
numerically (to order of the square root of machine precision) by replacing the 
derivatives of H with respect to the components of a by appropriate lirst order 
forward differences. The linear system (5.4) was solved using an in core banded 
solver. The iterations were considered “converged” when the absolute value of all 
components of ak+’ - ak were less then 10p5. In the continuation process, the 
increments of Reynolds number were adjusted to obtain convergence within 10 
iterations. 

Computations have been performed with both schemes using two grid sizes 
corresponding to n = 19 and n = 39 for Reynolds numbers to 10,000. Calculations 
were made at high Reynolds numbers with the purpose of indicating the robustness of 
the numerical method rather than giving a detailed picture of the flow field. An 
accurate resolution of boundary layers, corner eddies, etc., would require more mesh 
points, or mesh clustering and will be a topic of a later work. All calculations were 
performed on the CRAY-1 at AFWL (Albuquerque, N.M.). No attempt was made to 
optimize our program for this machine. Each iteration required 0.29 set of CPU time 
for n = 19 and 2.4 set of CPU time for n = 39. Roughly half of this time was used in 
solving the banded system (0.13 set and 1.69 set for n = 19 and 39, respectively). 
For the n = 19 grid, the continuation in Reynolds number for both schemes consisted 
of R = 0, 100, 300, 500, 1,000, 5,000, 10,000. For the n = 39 grid, smaller steps in R 
were needed beyond R = 1000 to maintain convergence within 10 iterations for 
scheme A and beyond R = 5000 for Scheme B. Throughout the range of Reynolds 
numbers considered, no oscillations in converged results were observed for either 
scheme on either mesh. Typical computer plots of the discrete velocity fields and the 
streamlines (which are in fact level curves of the scalar field corresponding to 

ia i+(1’2)*ji(“2)}) are shown in Figs. 5 and 6. 

- 

FIG. 5. Velocity field and streamlines for R = 500 (Scheme A with n = 39). 
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FIG. 6. Velocity field and streamlines for R = 10,000 (Scheme A with n = 39). 

6. CONCLUDING REMARKS 

In this paper we have shown how certain finite difference schemes for the two- 
dimensional steady incompressible Navier-Stokes equations in primitive variable 
form with Dirichlet boundary conditions may be reformulated as a system of discrete 
Galerkin equations. We have also indicated how this reformulation is related to the 
network theory approach of [ 11. The solution of the reformulated equations is 
computationally efficient since the number of variables is greatly reduced. 

In later work we plan to extend this approach to the cases of more complicated 
boundary conditions, unsteady flows, three-dimensional flows, and turbulence 
modeling. The reduction of finite difference equations to a discrete Galerkin setting is 
also useful for examining theoretical topics such as existence, uniqueness, and 
convergence. These topics will also be explored in a later work. 
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